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Abstract
In this thesis we will introduce the synchronization problem on (R,+) and (R \{0}, ·)
(Section 1). In a real world scenario, measurements are obtained with uncertainty and,
for computing calculus with error propagation, we will use the interval arithmetic (Section
2). From this point of view, we want to generalize the synchronization problem (which is
usually performed on groups) admitting interval arithmetic. This is problematic due to
the weak algebraic structure of (IR,+) and (IR>0, ·): they both are commutative monoids.
In Section 3 we generalize the distributed interval synchronization algorithm, described
in [1], to directed graphs for both the (IR,+) and (IR>0, ·) monoids. The pseudo-codes
and the effectiveness evaluation are described in the last section.
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Preliminaries
In this section we review some useful concepts of graph theory and set the notation. A
graph is a pair G = (V,E) where V is a finite set and E is a family of pairs of elements
of V . If the pairs are ordered, then G is called a directed graph (or digraph), otherwise
it is called an undirected graph. The elements of V are called vertices or nodes, and the
elements of E are called edges. We use n and m to denote the number of vertices and
edges respectively, namely n = |V | and m = |E|. Note that every directed graph can
be turned into an undirected graph by ignoring the orientation of the edges, and every
undirected graph can be turned into a directed graph by orienting the edges arbitrarily.
A weighted graph is a graph together with a weight function ω : E → R+ . If the graph
is unweighted, we set ω : E → {1} and call ω the uniform weight function.

An edge e = (v, w) is said to be incident to both v and w. If G is undirected, then
v and w are called the endpoints of e. If G is directed, then v and w are called the tail
and the head of e, respectively, and e is said to leave v and enter w. An edge of the form
(v, v) is called a loop.

We will consider simple graphs, i.e., graphs where there is at most one edge connecting
a pair of noes.

A subgraph G′ = (V ′, E ′) of G is a graph with V ′ ⊆ V and E ′ ⊂ E. If E ′ is a subset
of E, then G \E ′ denotes the graph obtained by removing all the edges in E ′ from G. If
V ′ is a subset of V , then G \ V ′ denotes the graph obtained by removing all the vertices
in V ′ and their incident edges from G.

Cycle Bases A cycle is an undirected graph is a subgraph in which every vertex has
even degree (no need to be connected). A circuit is a connected cycle in which every
vertex has degree equals two. Let’s associate each cycle to a vector in Zm

2 as follows1:

Ck(e) =

{
1 the node i belongs to the k − cycle;
0 otherwise. ∀e ∈ E

(1)

The set of all cycle of a graph G forms a vector space over Z2 (the two-module sum of
due cycle of G is a cycle of G) which is called the cycle space of G.

It can be shown ([2]) that the dimension of the cycle space is given by the cyclomatic
number

ν = m− n+ c, (2)

where c denotes the number of connected components of G. If G is connected and T is a
spanning tree of G, then adding any edge from E \ T to T generates a circuit ([3]). The
set of such circuits forms a cycle basis, which is referred to as the fundamental cycle basis.

If we consider the directed graph G such that for any vertex v ∈ V it holds A directed
cycle is represented by a vector c ∈ Qm such that for any vertex v ∈ V it holds∑

e∈δ+(v)

[ccc]e =
∑

e∈δ−(v)

[ccc]e, (3)

where δ+(v) and δ−(v) denote the edges leaving and entering v, respectively, and [ccc]e
denotes the component of ccc indexed by edge e. Directed cycles may use arcs in forward
([ccc]e > 0) or backward ([ccc]e > 0) direction. In particular we will consider only the case

1From this moment, we won’t distinguish a cycle from its representation as vector in Zm
2 .
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where [ccc]e ∈ {−1, 0, 1} where +1 indicates that the orientation of the edge coincides
with the orientation of the cycle, −1 if the orientation of the edge is the reverse of the
orientation of the cycle, 0 if the edge does not belong to the circuit. It can be shown that
an undirected cycle basis can be turned into a directed cycle basis, but the converse is
not true ([3]).

Matrices associated with graphs. Let G = (V,E) a finite simple (directed or undi-
rected) graph with n nodes and m vertices. The adjacency matrix of G is defined as the
n× n matrix A(G) in which:

A(G)i,j =

{
1 if (i, j) ∈ E

0 otherwise.
(4)

A node is not considered adjacent to itself, so A(G) has a zero diagonal. We note that
the adjacency matrix is symmetric since the graph is undirected.

The incidence matrix of a finite simple directed graph G⃗ = (V,E) with n nodes and
m edges is defined as:

B(G⃗)ij =


1 if i is the head of ej,
−1 if i is the tail of ej,
0 otherwise.

(5)

The rows of the incidence matrix correspond to vertices of G and its columns to edges
of G. Each column has exactly two non zero entries, which correspond to the endpoints
of the edge associated to that column. It is shown in [2] that, if G is connected, then
rank(B(G)) = n− 1. In the following sections, the adjacency or incidence matrix will be
denoted simply as A,B when is clear at which graph are associated.

The degree matrix D of G, i.e., is the n× n diagonal matrix such that [D]i,i contains
the degree of node i:

D(G)ij =

{
ΣjA(G)i,j, if i = j

0, otherwise.
(6)

Equivalently, it can be defined as

D(G) = diag(A(G)111n×1), (7)

where 111n×1 denotes a n × 1 matrix filled by ones. We note that, for undirected graphs,
ΣjA(G)i,j is the degree of vi and for directed graphs ΣjA(G)i,j is the outdegree of vi.
The transition matrix (a sort of normalized adjacency matrix) of G is defined as P (G) =
D(G)−1A(G).

We now introduce the Hadamard product and some proprieties that we will use. Let
A and B be two real matrices of dimension m× r. The Hadamard product (or entrywise
product) of A and B, denoted A ◦ B, has dimension m × r as well, and it is simply the
product of the corresponding elements

A ◦B =

 [A]1,1[B]1,1 [A]1,2[B]1,2 . . . [A]1,r[B]1,r
...

...
...

...
[A]m,1[B]m,1 [A]m,1[B]m,1 . . . [A]m,r[B]m,r

 . (8)
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Figure 1: An (R,+) consistent (edge) labelling.

The Hadamard product is associative, distributive, commutative, and it satisfies the fol-
lowing properties:

vec(A ◦B) = diag(vec(A))vec(B) (9)
rank(A ◦B) ≤ rank(A)rank(B); (10)

Proposition 1. Suppose A,B are m×n matrices, and D1 and D2 are diagonal matrices
of size m and n, respectively. Then,

D1(A ◦B)D2 = (D1AD2) ◦B = (D1A) ◦ (BD2) = (AD2) ◦ (D1B) = (D1BD2) ◦ A (11)

Corollary 1. For any square matrix A and vectors xxx and yyy we have

xxxyyyT ◦ A = diag(xxx)A diag(yyy). (12)

Proof. It follows immediately from Proposition 1 with B = 1.

Theorem 1 (Perron-Frobenius). If an n×n matrix A has non-negative entries (i.e. A >
entry-wise) and hasn’t block-triangular decomposition then admits a simple, non-negative,
real eigenvalue λ with maximum absolute value (among all eigenvalues) with corresponding
eigenvector positive.

We note that an adjacency matrix A(G) has a block-triangular decomposition if and
only if G is connected. The Perron-Frobenius Theorem implies immediately that, if G is
connected, the largest eigenvalue of A has multiplicity 1. Likewise, the largest eigenvalue
of the transition matrix P is 1 and has multiplicity 1. It is easy to check that the
eigenvector associated to such eigenvalue is 1n×1.

1 Basics of Synchronization problem
In this section we will introduce the synchronization problem in the canonical way, later
we will discuss the interval arithmetic case. The goal of a synchronization problem is to
find values of nodes of a graph, which best "fit" according to the edge labelling.

For example, given n real values unknowns, we want find them based on some given
pairwise differences (edge label). This problem is solvable exactly only if the pairwise
differences are "consistent". In real world scenario, this requirement isn’t achievable, then
our solution will be the "best" assignment which is the composed by the real numbers
that produce the minimum error (based on a reasonably norm). This problem can be
generalised considering any group (we gave the example with (R,+)) and is formalized
by the following definitions.
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Figure 2: An (R,+) "inconsistent" (edge) labelling.

Definition 1 (Labelling). Let (Σ, ◦, 1Σ) be a group and G⃗ = (V,E) be a finite simple
digraph, with n = |V | vertices and m = |E| edges. A Σ-labelled graph is a digraph with
labelling of its edge set by elements of Σ, that is a tuple Γ = (V,E, z) where z : E → Σ is
a labelling of the edges such that if (u, v) ∈ E then (v, u) ∈ E and z(v, u) = z(u, v)−1.

We note that, since the interval arithmetic isn’t a group, in section 3 we are going to
make an ad hoc definition for a interval labelling. Let’s also observe that, for all pair of
nodes (i, j) ∈ V 2 the two conditions xi ◦ zi,j = xj and xj ◦ zj,i = xi are exactly the same
due to the group structure; this won’t be the case for the interval labelling.

Definition 2 (Consistency error). Let Γ = (G, z) be a Σ-labelled graph for G = (V,E)
and let x̃ : V → Σ be a vertex labelling. Let f : Σ→ R be a symmetric, positive definite
function with f(1Σ) = 0 be the unique minimum. The consistency error of x̃ is defined
as

ε(x̃) = Σ(u,v)∈Ef(z̃(u, v) ◦ z(u, v)−1)

where z̃ is the edge labelling induced by x̃ : z̃(u, v) = x̃−1(u) ◦ x̃(v).

We usually say that a labelling is consistent if the consistency error is zero (for every
f : Σ→ R).

Definition 3 (Synchronization). Given an edge labelling z, the synchronization problem
consists in finding a vertex labelling of G with minimum consistency error.

This formalization can be useful to recover unknown group elements (vertex labels)
given a redundant set of noisy measurements of their ratios (edge labels). Synchronization
requires the graph to be connected, but errors compensation happens only with cycles.

Example 4 (Clock synchronization problem). In wireless networks, nodes must often
act in coordinated or synchronized fashion. This requires global clock synchronization,
wherein all nodes in the network are synchronized to a common clock.

The network is modeled as a directed graph of n+1 nodes {0, 1, 2, . . . , n}, where each
edge represents the ability to transmit and receive packets between the corresponding pair
of nodes. Each node i has a clock t + oi

2, where t represents the reference time variable
of node 0 and oi are a unknown real values.

Estimates of clock differences between pair of nodes connected by an edge can be ob-
tained by exchanging of time-stamped packets. So we can obtain the values oi,j (adjusted
in the proper way with the delay of time-stamped packets transmission, if needed) which
represents an estimate of oj−oi. The clock synchronization problem can easily be resolved
through a synchronization problem in (R,+) where xi = oi and zi,j = oi,j.

2This is an easy version of the clock synchronization problem
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Synchronization in (R,+). Let B be a n×m incidence matrix of G and zzz the vector
containing the edge labels (ordered as in B); it is easy to see that for all the edges the
equation above becomes xxxTB = zzzT , or

BTxxx = zzz. (13)

We assume that the graph in connected (each connected component can be solved in-
dependently from each other), hence rank(B) = n − 1. Since the solution of the group
synchronization problem is uniquely defined up to a global group element, we are allowed
w.l.o.g. to arbitrarily set xk = 0 for a chosen k ∈ V . Removing the xk from the un-
knowns and the corresponding row in B leaves a full-rank n − 1 × m matrix Bk (also
called "reduced" incidence matrix). Hence we solve

BT
k xxx = zzz. (14)

The last equation has a unique least squares solution, because we can multiply each side
of the equation by Bk . Then, we have that BkB

T
k is a (n− 1)× (n− 1) invertible matrix

as ker(BkB
T
k ) = {000}. The mathematical solution is

xxx = (BkB
T
k )

−1Bkzzz. (15)

Considering f(·) = |·|2 : Σ→ R+, the consistency error of the synchronization problem
writes

ε(xxx) =
∑

(u,v)∈E

|x(v)− x(u)− z(u, v)|2 = |BTxxx− zzz|2. (16)

Thus, the least squares solution of 14 solves the synchronization problem.

Proposition 2. If x̂xx is the least-squares solution of Equation 14, then the induced edge
labelling ẑzz = BT

k x̂ solves the following constrained minimization problem

min
Cẑzz=0
|zzz − ẑzz|2, (17)

where C ∈ {−1, 0, 1}(m−n+1)×m denotes a directed cycle basis matrix.

This proposition is true for any least-squares problem with the constraint Dẑ = 0
where DT is a basis for null(Bk): C is exactly such a base (see preliminaries).

If ccc is the indicator vector of a cycle, cccTzzz is the (algebraic) sum of the edge labels
along the cycle, hence the cycle is null iff cccTzzz = 0. If the equations coming from all the
circuits in a (directed) cycle basis are stacked, then we get

Czzz = 0. (18)

Synchronization in (R \{0}, ·) In Σ = (R \{0}, ·) a vertex labelling x : V → R is
consistent with a given edge labelling z : E → R iff

z(u, v) = x(u)−1 · x(v) ∀(u, v) ∈ E. (19)

The consistency constraint can be expressed in an equivalent compact matrix form.
Let x be the vector containing the vertex labels and let Z be the matrix containing the
(inverse of the) edge labels

xxx =


x−1
1

x−1
2
...

x−1
n

 , Z =


1 z12 . . . z1n
z21 1 . . . z2n
...

...
zn1 zn2 . . . 1

 . (20)
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For a complete graph the consistency constraint rewrites:

Z = xxxxxx−T , (21)

where xxx−T denotes the row-vector containing the element-wise inverse of xxx, in this case
xxx−T = (x1, x2, . . . , xn). Z = xxxxxx−T contains the edge labels induced by xxx.

Note that Equation 21 implies that rank(Z) = 1, and also that diag−1(Z) = 111 and
Z ◦ ZT = 1.

Definition 5. A matrix Z s.t. Z ◦ ZT = 1 is said to be reciprocal, as this implies that
zij = 1/zji for all i, j. If, in addition, ∀i, j zij > 0 than Z is said to be positive.

If the graph is not complete then Z is not fully specified. In this case missing edges
are represented as zero entries,3 i.e. ZA := Z ◦ A represents the matrix of the available
measures, where ◦ is the Hadamard product and A is the adjacency matrix of the graph
G. Hence the consistency constraint writes

ZA = (xxxxxx−T ) ◦ A. (22)

Considering f(·) = ||1 − ·||2 : Σ 7→ R+,, the consistency error of the synchronization
problem is

ε(xxx) = Σ(i,j)∈E|zij − x−1
i xj|2 = ||ZA − (xxxxxx−T ) ◦ A||2F , (23)

where ||·||F denotes the Frobenius norm. The Hadamard product (or entry-wise product)
with A mirrors the summation over the edges of E in the definition of the consistency
error. The minimization of ε is a non-linear least squares problem, for which closed-form
solutions do not seem to exist; however, we are going to discuss a solution of related
version of this problem.

Spectral Solution. Let us consider the noiseless case, and let us start assuming that
the graph is complete. Using the consistency constraint and the fact xxx−Txxx = n we obtain

1

n
Zxxx = xxx (24)

which means that, in the absence of noise, xxx is the eigenvector of Z/n associated to the
eigenvalue 1. Note that, since Z has rank 1, all the other eigenvalues are zero, thus 1 is
also the largest eigenvalue of Z/n.

We now consider the case of missing edges in which the graph is not complete and the
degree matrix D comes into play. Using Proposition 1, the consistency constraint can be
expressed as

ZA = (xxxxxx−T ) ◦ A = diag(xxx)Adiag(xxx−T ) = diag(xxx)Adiag(xxx)−1 (25)

which implies that (thanks to diag(xxx)yyy = diag(yyy)xxx)

ZAxxx = diag(xxx)Adiag(xxx)−1xxx = diag(xxx)A111n×1 = diag(A111n×1)xxx = Dxxx, (26)

where 111n×1 is a vector of ones and D is the degree matrix of the graph (since A111 is the
sum of the rows of A). This allows to state that

3We note that 0 does not belong to the group, hence it is available as "special" value.
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Proposition 3 (Singer, 2011). The vertex labelling xxx is the eigenvector of D−1ZA asso-
ciated to the eigenvalue 1.

Proof.
ZAxxx = Dxxx ⇐⇒ (D−1ZA)xxx = xxx. (27)

Note that the incomplete data matrix ZA has full rank in general, thus 1 is not the
unique non-zero eigenvalue of D−1ZA, in contrast to the case of a complete graph. How-
ever, it can be shown that 1 is the largest eigenvalue of D−1ZA.

Proposition 4. The matrix D−1ZA has real eigenvalues. The largest eigenvalue is 1 and
it has multiplicity 1.

Proof. Observe that: D−1ZA = D−1(Z ◦ A) = Z ◦ (D−1A) by virtue of Theorem 1 hence
D−1ZA and D−1A are similar, i.e. they have the same eigenvalues. The matrix P = D−1A
is the transition matrix of the graph G, which, as a consequence of the Perron-Frobenius
Theorem (1), has real eigenvalues and 1 is the largest eigenvalue (with multiplicity 1), if
the graph is connected.

The proof of the proposition above has pointed out that if Z is a reciprocal matrix,
the matrix D−1ZA has a particular structure that yields real eigenvalues, although it is
not symmetric. In particular, the eigenvalues do not depend on the measured data, but
they depend only on the structure of the graph G (through its transition matrix).

Note that an eigenvector is defined up to scale, and the scale indeterminacy is in
agreement with the fact that the solution to synchronization is defined up to a global
group element.

Example 6. We show an heuristic example where a problem can be effectively formalized
and solved through a synchronization problem with (R \{0}, ·) group. Suppose a judicial
panel has to evaluate the performances of a group of athletes (or various brands) through
comparisons: judges have to express pair-wise comparisons like "A is 3 times better than
B" or "A is 1/3 better (worse) than B". In this cases, is reasonable formalize the problem
with a graph, considering a node for each athlete and an oriented edge for each comparison
(just take the mean for different evaluations of a pair). The node labelling (up to a scalar
value) obtained through the solution of the synchronization problem, (R>0, · · · ) case, will
be a great absolute (means all compared to a single athlete: the anchor) evaluation of all
the athletes.

2 Interval arithmetic
In the present section we want to explain what is interval arithmetic and why should we
use it. Interval arithmetic is also known as interval computation: this gives us the idea
that we want to represent real numbers as intervals (possibly small ones) and execute
mathematical computations on it. Interval arithmetic is also a tool to formalize error
measurements and find the exact errors propagation through calculations.

An interval [a, b], where a, b ∈ R, is defined as the set {x : a ≤ x ≤ b}. We denote with
IR the interval set, in other words the set of all closed and bounded intervals of R. When
we talk about interval arithmetic, we imply that there is an operation such that given
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two closed and bounded intervals, it returns a closed and bounded interval. In general,
we can define it in a very natural way, just considering operations that are available on
R. Given X, Y ∈ IR (capital letters will specify elements in IR), we want to define X ◦Y
◦ ∈ {+,−, ·, /} as follow:

X ◦ Y = {x ◦ y : x ∈ X, y ∈ Y }. (28)

Now, we face the first problem: is the image set of these operations IR? In the case of
+,−, ·, it’s not hard to see that all work, but with / we are in trouble: the operation
could not be well definite (just consider as divisor ad interval containing zero).

We can discard, for the moment, the operation / and we try to focus our attention
only on ◦ ∈ {+,−, ·}. We only highlight that in case we limit our analysis with the
set IR>0 := {[a, b] ∈ IR : a, b > 0}, which is the set of intervals with positive endpoints,
division / is well defined thanks to reasoning used in the proof of Proposition 5.

Proposition 5. The operation 28 is well defined in IR in the case that ◦ ∈ {+,−, ·}.
Moreover, (IR, ◦) is a commutative monoid, but not a group.

Proof. Let X, Y ∈ IR and Z ⊆ R such that X ◦ Y = Z. We observe that minz∈Z z =
minx∈X x + miny∈Y y, the analogue is valid for max (and, also, for −). In the case of ·,
maximum and minimum of Z exists, but they could be obtained by multiplication of min
(or max) depending on the signs of the intervals X and Y , so the set Z is then bounded.
Moreover, the function ◦ : R2 → R is continuous, so it maps the connected set X×Y in an
other connected set, which must be a (closed) interval in R. Every operation is associative
and commutative, because +,−, · are associative and commutative as operation in R.

Note that +,− has {0} as identity element, and · has {1}, which are singletons (the
simplest elements of IR).

Finally, only singletons has inverse (except for {0} with multiplication): as an example
let’s consider [−1, 1]. Then, by definition, for all a ∈ R we have that {a} + [−1, 1] is a
closed interval of length 2. In general, for all interval X containing a as element, we have
that {a}+ [−1, 1] ⊂ X + [−1, 1], which is definitely not {0}.

We can give, thanks to the proposition above, an operative definition for the interval
arithmetic coherently with the Equation 5.

Definition 7. Let IR be the interval set and [a, b], [c, d] ∈ IR. We define ◦ ∈ {+,−, ·} as
follow:

[a, b] ◦ [c, d] = [min{a ◦ c, a ◦ d, b ◦ c, b ◦ d},max{a ◦ c, a ◦ d, b ◦ c, b ◦ d}].

2.1 Interval matrix

We follow the analysis conduct in [4]. In this section we consider only square n × n
matrices. Such a matrix A is called nonnegative if all its components are nonnegative. A
nonnegative matrix A is reducible if there exists a permutation matrix P such that

P TAP =

(
B C
0 D

)
,

with B,C,D are all square matrices. We denote with ρ(A) the spectral radius of A and
we write x > 0 for x ∈ Rn if every component of x is positive. Finally, we denote with
e⃗ = (1, . . . , 1)T ∈ Rn.

10



Remark 8. We remind that for every nonnegative irreducible matrix there exists a unique
vector x such that Ax = ρ(A)x, e⃗Tx = 1 and x > 0. In addition, ρ(A) is the only eigen-
value for which exists a positive eigenvector. Such a vector is called Perron eigenvector.

Now we take in account interval matrices. Let A,A ∈ Rn×n such that A ≤ A, then

AAA = [A,A] = {A : A ≤ A ≤ A}.
The interval matrix AAA is nonnegative if A ≤ 0. We say that AAA is irreducible if every A ∈ AAA
is irreducible.

Lemma 1. A nonnegative interval matrix AAA = [A,A] is irreducible if and only if A is
irreducible.

Proof. If AAA is irreducible, then by definition also A is too. On the other hand, suppose
A is irreducible, and assume that exists a matrix A ∈ AAA that is reducible. Let P be the
matrix permutation such that

P TAP =

(
B C
0 D

)
.

This implies that(
0 0
0 0

)
≤ P TAP =

(
B1 C1

E1 D1

)
≤ P TAP =

(
B C
0 D

)
.

Hence, E1 is forced to be a null square matrix and A to be a reducible matrix. This is a
contradition and proves our thesis.

Thanks to Lemma 1, if A is nonnegative and irreducible, it makes sense to consider
the spectral radius and the Perron eigenvector of AAA. We define these concepts as follows.

The spectral radius is

{ρ(A) : A ∈ AAA} = [ρ(A), ρ(A)]

where the last equality follows from the continuity of ρ function (see [4] for more details).
We now state Perron-Frobenius theorem for interval matrices.

Theorem 2. Let AAA = [A,A] be an irreducible nonnegative interval matrix, then the vector
x ∈ Rn is the Perron eigenvector of a matrix A ∈ AAA if and only if

• AxxT ≤ xxTA;

• e⃗Tx = 1;

• x > 0.

3 Generalization of the synchronization problem with
intervals

3.1 Formalization

We would like to analyze the synchronization problem on graph, whose edges are labelled
with intervals. The main operation we are dealing with is on Ω = (IR, ◦), where ◦ is + or

11



·. The pair G = (V,E), which include G’s structure, is composed by the vertex set V and
the edge set E. We finally observe that (IR, ◦) is a commutative monoid with identity
elements {0} and {1} respectively for ◦ and +. The group structure is absent because
only singletons have inverse, so if I,X, Y ∈ IR are intervals (X, Y nodes label, I edge
label) and we get the equation X ◦ I = Y , then we aren’t able to find the inverse of I and
to make X explicit. However this issue could be solved following the procedure explained
in Proposition 6.

Definition 9 (Interval labelling). An interval labelling (called node I-labelling) is a func-
tion XXX : V → IR, where we call Xk := XXX(k) for all k ∈ V . Given two node I-labelling, xxx
and yyy, we write xxx ⊆ yyy if for every k ∈ V it is true that xxx(k) ⊆ yyy(k).

Definition 10 (Consistent node labelling with an edge I-labelling). A node labelling
x : V → R is interval-consistent with a given edge labelling zzz : E → IR if

∀(i, j) ∈ E x(j) ∈ x(i) ◦ zzz(i, j).

We observe that, given a consistent labelling x : V → R, for all a ∈ R the function
y : V → R defined as y(i) = x(i) ◦ a is a consistent labelling. We are in front of an
equivalence relation, so we can just only look for a solution up to a translation factor.
This fact can be implemented just taking one random node (or a chosen one) and setting
its value to a constant, such as 1Ω: we call this node anchor.

In the next definition we want to formalize the following idea: our best solution to the
interval synchronization problem consists on finding the interval labelling which contains,
in every node i, all (and only) the possible values of the node i of a consistence node
labelling (with a fixed anchor).

Definition 11 (Interval synchronization problem). Given an edge I-labelling zzz : E → IR,
the solution to the interval synchronization problem is the interval node labelling sss : V →
IR defined as the image of all the interval-consistent node labelling, i.e. for a fixed k ∈ V ,
let D be

D = {x : V → R : x is interval consistent ∧ x(k) = 1Ω}

then sss(i) =
⋃

x∈D x(i). We claim that sss(i) is an interval.

Finding the solution sss to the interval synchronization problem can be really challeng-
ing. Due to this fact, our algorithm will find a less refinement labelling, which contains
the solution.

Definition 12 (I-labelling limit). We say that an I-labelling is a limit I-labelling if Xk ̸= ∅
for all k ∈ V and

Xj ⊆ (zzz(i, j) ◦Xi) ∀(i, j) ∈ E.

Given two nodes i, j ∈ V such that (i, j) ∈ E and a I-labelling, we can spread Xi,
i.e. computing zzz(i, j) ◦Xj, only following the direction of the edge (i, j), because of the
lack of inverses in (IR, ◦). The presence of a limit I-labelling is, intuitively, a good goal
because the concept of a consistent I-labelling is very weak. In fact, an I-labelling where
Xk = (−∞,+∞) for all k ∈ V is consistent, but it tells nothing about any possible
consistent node labelling.

We adopt an iterative approach, where each node evaluates its label only on the basis of
its neighborhoods. Each node periodically communicates its label to the adjacent nodes;
there is no constrain about the timing of this communication, and it is not required that
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the label is sent to all the adjacent nodes at once. By iterating these steps, we claim
that the node labels asymptotically "converge" to the interval solution sss. This mean that
with an iterative approach, which is described later, we end up with a limit I-labelling
such that sss(k) ⊆ Xk for every k ∈ V . It is easy to see that there are many possible limit
I-labelling, but there are some which are the best, i.e. the ones where mean amplitude
is the smallest possible. This goal strictly depends on the conditions we have imposed at
the beginning of the algorithm, but also on the algorithm itself.

3.2 How interval synchronization works

Interval synchronization for (IR,+) In section 2, we have already analyzed the
basics of the synchronization problem with a general group, but now we want to focus
on synchronization defined on the commutative monoid IR. The genesis of this problem
starts from the impossibility of taking precise measurements between nodes. In order
to take in account edge labels errors, which usually are symmetric intervals with some
(hopefully) small radius, we use interval arithmetic of section 1. In this section we focus
on building a procedure to solve synchronization with the interval arithmetic case.

The following works only for ◦ = +. Let B be a n×m incidence matrix of a graph G
and zzz ∈ IR the vector containing the edge labels (ordered as in B). Moreover, let xxx ∈ R|V |

be the image set of a node labelling. Similarly to what we have done in section 2, it’s
easy to see that if the node labelling is interval consistent then we have that

xxx ∈ (BkB
T
k )

−1Bkzzz.

So, we can consider the following I-labelling

XXX = (BkB
T
k )

−1Bkzzz, (29)

where the k-th element of XXX is Xk, that is the I-label of node k.
We remind that our aim is to find sss (definition (11)), or at least an I-labelling which

is near to sss. So, is (29) a good solutions? As we have said, we are sure that sss(k) ⊆ Xk,
so our I-labelling contains our "true" solution. The tightness of XXX is strictly dependent
upon the quality of data we are dealing with.

Interval synchronization for (IR>0, ·) The analysis is pretty similar to the one we
have done about the spectral solution, in Section 1. Let Z be the matrix defined as in
equation 20, where zzz is the edge I-labels (if there are no edges connecting two nodes we
put {0}). Consider a node label x : V → R and x−T as in (20), then, by definition, we
have that

xx−T ∈ Z.

Let A be the adjancecy matrix of the digraph G and ZA as in (22). Hence, we proceed as
we have done in (25). We have that

diag(x)Adiag(x)−1 ∈ Z,

it follows that Dx ∈ ZAx, where D is the matrix defined in (6). So our goal is to find a
node label x such that

x ∈ D−1ZAx.

Let S = {x : V → R |x ∈ D−1ZAx}, then we have to find xxx =
⋃

x∈S x (with a little abuse
of notation), and we claim that xxx has as image set IR. Actually, it is sufficient to find at
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least a node I-labels yyy for which yyy ⊇ xxx. Unfortunately, it’s not so easy to find such xxx or
an estimate yyy, and there are no predefined INTLAB function for such a task. We have
tried manually to implement a function that, given G and Z, computes xxx. However, we
were able to find an interval estimate yyy with some high probability contains xxx. In other
words, we were not able to prove that all solutions of x ∈ D−1ZAx are contained in yyy,
but we are sure that at least part of that solutions is there (see Figure 3 for some results
of an experiment).

Figure 3: This errorbar is made over a graph G of seven nodes. It represents in red
the estimate of the synchronization problem over (IR, ·) given by the ’standard’ way we
described. In blue IL algorithm results are represented (which are generally better).

In the following section, we would like to generalize the algorithm presented in [1] also
to directed graph in (IR,+) and in (IR>0, ·).

4 IL algorithms
IL algorithm on (IR,+) The algorithm we describe is the same as the one discussed
in [1], but considering directed graph. We give a little remands on the main steps of the
following algorithm (we denote it with IL algorithm, which stands for ’Interval Labelling
’). The method proceeds considering one random edge at time, and this is due to the
fact that we want to deal with a distributed system, in which every node has only a
’local’ knowledge. Every node computes a measurement (or several measurements) of his
neighbors and set a interval label on the edge that connects the two. All details of IL
algorithm’s working are discussed in this section. Now we introduce the first prototype,
which will be upgraded with the help of Lemma 2.

First prototype of IL algorithm on (IR,+)

1. We start selecting an anchor, for instance k ∈ V , and adding the constraint xxx(k) =
{0}.

2. We set all labels as (−∞,+∞), except the anchor which has {0}.

3. Every unit of time we propagate a randomly chosen node label along a directed
edge, i.e. following the corresponding arrows. Formally, given (i, j) ∈ E, let Xi and
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Figure 4

Xj the labels in IR at time t. Let X ′
j = Xi + zzz(i, j), then the update value of node

j at time t+ 1 is Xj ∩X ′
j.

4. We keep on repeating step 3, until XXX is a limit I-labelling, i.e.

Xj ⊆ (zzz(i, j) +Xi) ∀(i, j) ∈ E.

Issues concerning the first prototype There might be some graphs in which the
algorithm we have just described doesn’t work as we expect. For example, consider the
graph in Figure 4: if the node X4 is the anchor, then our algorithm is useless because we
are not able to update any node. On the other hand, if node X2 is not the anchor, then
there is no way to update the value X2, so it remains (−∞,+∞). All problems comes
from the lack of inverses in IR. However, we are not totally hopeless because we are still
able to say something about nodes which are not reachable from the anchor. Here we
explain how we are able to upgrade performance of IL algorithm.

CX F

Proposition 6. Consider two nodes with I-labels X,F linked by a directed edge from X
to F with I-label C. This situation mathematically implies that we can add an edge from
F to X with I-label −C.

Proof. Consider a situation like the one in the figure, where C = [c, d], F = [e, f ]. We know
that X +C = F but we want also to upgrade X = [x, y]. We have that [e, f ] = X + [c, d]
and, in principle, this equation says that for every x ∈ X and for every t ∈ [c, d] then
x+ t ∈ [e, f ]. We can observe also that the interval [e, f ]− [c, d] must contains X, because
doing − operation in IR we have just substitute the exists quantifier with a ’for all’ one.
In other words, we have that

[e, f ] = X + [c, d] =⇒ [e, f ]− [c, d] = [e− d, f − c] ⊃ X.

In addition, it’s easy to see that all elements in [e− d, f − c] could be actually in X, but
not all at the same time otherwise it would be valid that

[e− d, f − c] + [c, d] = [e, f ],

which is clearly wrong. So the estimate [e−d, f−c] for X it is the better possible knowing
that [e, f ] = X +[c, d]. The inclusion [e, f ]− [c, d] ⊃ X, having in mind how IL algorithm
works, implies that we can add a directed edge from F to X with I-label −C. This proves
the thesis.
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IL algorithm on (IR,+) over directed and undirected graphs

Lemma 2. Developing the previous consideration, we state that computing the IL algo-
rithm over a digraph is totally equivalent to run it over a specific non-directed graph. The
sense of considering a non-directed edge with label E ∈ IR must be clarified: this edge is
treated by IL algorithm as if there are two directed edges one with E label and the other
with −E label.

Figure 5

Proof. Consider the digraph in the adjacent figure. Sometimes it happens that it has a
double edge between two nodes, i.e. (1, 3), (3, 1) ∈ E, sometimes only one, i.e. (5, 1) ∈ E
but (1, 5) ̸∈ E, and in the remaining cases there are not edges. If we select an edge
(i, j) ∈ E, the IL algorithm will update, at random time, vertex Xj using Xi and zzze,
where zzz is the edge I-label. However, because of what we have said before we know that
Xi must be contained in Xj−zzze, and this is completely equivalent of having an edge (j, i)
with I-label −zzze. If such edge already exists, then we have two measurements from a node
to a successor, which means that we can consider just one edge with the intersection of
I-label.

We now have to deal with graph for which if (i, j) ∈ E then also (j, i) ∈ E. We
now focus only on two nodes i, j linked by edges (i, j), (j, i). Let zzz(i, j) = [a, b] and
zzz(j, i) = [c, d]. We have to manipulate our edges following what we have described in the
previous, i.e. computing intersections zzz(i, j) ∩ (−zzz(j, i)) and zzz(j, i) ∩ (−zzz(i, j)). If, for
instance, we have that a ≤ −d ≤ b ≤ −c then we can deduce that the first intersection is
[−d, b]. A straightforward calculation from the previous chain of inequalities implies that

c ≤ −b ≤ d ≤ −a.

This inequality tells us that the latter intersection is [−b, d], which is the negative interval
of the previous one. Finally, we end up with a couple of edges with opposite I-labels.
The reasoning and the result holds in general for any possible combination of a, b,−c,−d
along real line. This fact concludes the proof.

We are now ready to illustrate the complete algorithm. The first prototype IL algo-
rithm is still valid but should be ’initialized’ on an appropriate graph, like the one we
described in Lemma 2. All issues we have suggested at the beginning of the section are
now fixed.

16



Final IL algorithm on (IR,+)

0. Given a digraph G, we build a digraph G’ following the step described in the proof
of Lemma 2. In detail, for every edge (i, j) ∈ E we add, if it’s not present, a new
edge (j, i) ∈ E giving the I-label −zzz(i, j). If (j, i) is already an edge, we update its
I-label with zzz(j, i) ∩ (−zzz(i, j)). Such an action has to be performed for every edge
in the starting graph G.

1. We start selecting a node anchor, for instance k ∈ V , and adding the constraint
xxx(k) = {0}.

2. We set all labels as (−∞,+∞), except the anchor which has {0}.

3. Every unit of time we propagate a randomly chosen node label along a directed
edge, i.e. following the corresponding arrows. Formally, given (i, j) ∈ E, let Xi and
Xj the labels in IR at time t. Let X ′

j = Xi + zzz(i, j), then the update value of node
j at time t+ 1 is Xj ∩X ′

j.

4. We keep on repeating step 3, until XXX is a limit I-labelling,4 i.e.

Xj ⊆ (zzz(i, j) +Xi) ∀(i, j) ∈ E.

It remains only to proof that IL algorithm reaches an end in a finite number of steps.
This is not so easy to proof, but we claim that it’s correct. However in application, we
are not really interested in actually reach an end because such a number depends on the
graph structure and the I-labelling and could be very high. We state this problem in a
more precise way in the Conclusion section.

IL algorithm on (IR>0, ·) We can adapt the algorithm above to the (IR>0, ·) case. The
differences are listed below item by item:

0. instead of −zzz(i, j) we will consider 1
zzz(i,j)

;

1. the anchor xxx(k) is equal to {1} instead of {0};

2. instead of X ′
j = Xi + zzz(i, j) we will consider X ′

j = Xi ∗ zzz(i, j);

3. we will obtain the I-labelling limit when

Xj ⊆ (zzz(i, j) ∗Xi) ∀(i, j) ∈ E.

We note that the ” > 0” in IR>0 is necessary due to the fact that 1
zzz(i,j)

(in item 0) could
be undefined. However, if we relax the item 0 of the algorithm we can implement it on
all IR, because we will only need the · operation.

4.1 Pseudo-codes

We now discuss about the code that is behind IL algorithm. The pseudo-code puts in
a more formal way all steps of IL algorithm. What we present here is the main core of

4In applications, this is not really the case because we cannot predict the number of steps we have to
face. However, we use some stop criteria which we describe in the next section (pseudo-code).
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Algorithm 1 IL algorithm on (IR,+)

Require: G digraph with n nodes and m edges, k ∈ V is the anchor, z is m-vector of
intervals (I-labelling). Stop criteria: max_updates, max_iterations, max_steadiness
integer values.

G← step_0(G) ▷ do step 0 of IL algorithm
B ← incidence(G) ▷ Incidence matrix of G
integer iter = 0, steady[n], update[n] ▷ steady, update are n× 1 vectors
interval x[n] ▷ n× 1 vector with interval values

5: x[k]← {0}
update[k]← 1
steady(k)← max_steadiness + 1 ▷ anchor is steady
while iter < max_iterations do

s = random_integer(n)
10: N = successors(G, s) ▷ vector of nodes successors of s

if length(N) = 0 then
continue

end if ▷ If there are no successors we restart the cycle
t = random_integer(length(N))

15: k = findedge(G, s, t) ▷ k is the label of (s, t) edge
if ¬update(s) and ¬update(t) then

continue
end if ▷ we restart the cycle if both nodes are still (-inf,+inf)
old = x(t)

20: if update(s) then
iter← iter + 1
x(t) = intersection(x(t), x(s) + z(k)) ▷ step 3 of IL algorithm
update(t)← update(t) + 1
if old = x(t) then ▷ no updates

25: steady(t)← steady(t) + 1
end if

end if
if steady > max_steadiness or update > max_updates then ▷ stop criteria

break
30: end if

end while
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the algorithm. There are unexplained functions like step_0, which enlarge the number of
edge of graph G and also add (or update) edges I-label. It is sufficient that we feed our
algorithm just with measurements of nodes, no matter if there are holes (otherwise we
always deal with complete graphs).

In the pseudo-code we introduced some stop criteria, the one which represent the
reaching of a limit is steadiness. In fact, we increasing it by +1 every time there is no
update (note that we explicit avoid to increase steadiness when x(s) = (−∞,+∞) thanks
to ’if’ statement in line 16).

How to choose a proper anchor For the choice of the anchor we recall paper [1], in
which the topic is discussed in depth. For our purpose, we just highlight that the first
(natural) approach could be to see what is the graph topology and choose, for example, the
node with the highest out-closeness. However, this choice does not respect the distributed
approach we want to apply. Hence, anchor selection is now turned into anchor ’election’,
which consist of a distributed algorithm (Algorithm 3.2 of [1]) where all nodes start from
a real label. These labels are updated randomly (in a certain way) and, depending on the
quality of the information sent by nodes, all labels stabilized on the one that gives the
best updates (this is anchor). Such an algorithm provides a unique anchor.

Performance of IL algorithm on (IR,+) We have left implicit the way in which,
given a graph G, we produce edge I-labels. We generate random real numbers and we
compute the difference between the ones that are linked with an edge (head - tail). We
finally create an interval with random ends that contains the previous difference. In
details, we can give the following pseudo-code.

Algorithm 2 How to choose proper edge I-labels
B ← incidence(G)
integer max_values
integer radius
n← number_nodes(G); m← number_edges(G)
x← max_values ∗ rand_numbers(n,1) ▷ n× 1 vector of random real number
z ← BT ∗ x
z ← interval(z − radius ∗ rand_numbers(m, 1), z + radius ∗ rand_numbers(m, 1))

What could be of much interest is to see is how we measure the performance of this
algorithm. Recall we have describe, in Section 3.2, what is interval synchronization and
how to compute the limit I-labelling. We explore the results in the next section. Here, for
the pseudo-code we consider some typical tools we usually use in MATLAB. In particular,
we used INTLAB to perform the interval arithmetic.

Algorithm 3 Solving synchronization through linear system
B_k← B
B_k← B_k(k, :) = [ ] ▷ k-th row is empty
x← solve_linear_system(B_k ∗ (B_k)T, (B_k) ∗ z)
x← [x(1 : (k − 1); 0;x(k : end)] ▷ add 0 in anchor index
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4.2 Experiments

IL algorithm on (IR,+) We consider the graph in Figure 4 with Algorithm 1. We note

Figure 6: Plot of the average radius (orange) and the maximum radius (blue) iteration
by iteration. The initial radius of I-labels has mean 5.

that IL algorithm needs 75 iterations to complete his tasks. As we can see in Figure 6,
there is always a gap in the first few iterations because there are still nodes with (−∞,+∞)
label. Once all nodes have updated (−∞,+∞) label, IL algorithm keeps improving labels,
as expected, until one of the stop criteria is reached (in this case steadiness).

As [1] correctly notes, the greater is the cyclomatic number the better the final average
radius. This could be reported easily by experiments, but it’s almost a trivial result.
Indeed, more edges available implies more possibilities to update nodes I-label with respect
to a situation with fewer edges.

Figure 7: Plot of the final radius of each node with IL algorithm (blue) and with the
closed form of linear system (red). The black diamond represent the point from which
edge I-labels are generated randomly (see Algorithm 2). The initial radius of I-labels has
mean 5.

Through Figure 7 we can underline the difference between IL algorithm and solving
the linear system 29. There is one nodes I-label that is a point, and is of course the anchor
in both cases. On the other hand, even in a very tiny graph of just five nodes there is an
appreciable difference in the quality of the results. The sense of the issue is that solving
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the closed form of the problem gives a node I-labeling which is not limit. Hence, it can
be updated using IL algorithm to obtain an I-labeling ’closer’ to the true solution sss of
Definition 15.

IL algorithm on (IR>0, ·) For the (IR>0, ·) case, we will test the performance of our
algorithm based on a random sample. We create a sample of N = 40 graphs generated by
an algorithm which briefly works as following: n nodes are randomly generated in a unit
square; an edge links due nodes if and only if the due nodes have a distance minor equal
a given parameter r. From this, we consider a We note that, for r ≥

√
2 the algorithm

will surely produce a complete graph. For the I-labelling, we randomly choose a node
labelling (which will be in the I-labelling that we get from the IL algorithm) and produce
a consistent I-labelling with average radius equal to 5. The sample is generated with
parameter r = 0.23 + u

3N
with u ∈ 1, 2, . . . , N all with n = 40 nodes.

Figure 8: Numbers of edges vs. maximum node I-labels radius (blue) and average edge
I-labels radius (red).

We can note, from Figure 8, that despite more of the times our algorithm will dras-
tically decrease the maximum radius of each node, can happen that, for some specific
graph structure with few edges, an "unfortunate" node doesn’t get a great update. We
also observe that, with strongly connected graphs (high cyclomatic number), the max-
imum radius is way higher than the average edge I-labels radius, which ensure a good
effectiveness of our algorithm. This is also shown from the Figure 9.

We can also note that the performance algorithm quickly improve until the cyclomatic
number (Equation 2) becomes approximately equal to 130, then the effectiveness remains
more or less the same.
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Figure 9: Numbers of edges vs. average node I-labels radius (blue) and average edge
I-labels radius (red).
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