
UNIVERSITÀ DEGLI STUDI DI UDINE

Scuola Superiore Di Toppo Wassermann

4th year thesis

Well-Structured Transition Systems

SUPERVISOR
Prof. Gabriele Puppis
TUTOR
Prof. Alberto Policriti

STUDENT
Cristian Curaba

Academic Year 2022/2023

Contents
1 Well-quasi orderings 3

2 Well Structured Transition Systems 5

3 Classical methods 14
3.1 Set-saturation methods . 14
3.2 Tree-saturation methods . 16

4 Petri nets 20
4.1 Introduction . 20
4.2 Formal definition . 21
4.3 Petri nets as WSTS . 23

1

Introduction
The concept of a well-structured transition system (WSTS) arose thirty years
ago ([Fin90],[Ott87]) when such systems were initially called structured tran-
sition systems and were shown to have decidable termination and bounded-
ness problems.

WSTS were developed for the purpose of capturing properties common to
a wide range of formal models used in model-checking, system verification and
concurrent programming. The coverability (Theorem 3.1) for such systems
was shown decidable in 1996 ([Abd+96]), thus generalizing the decidability of
coverability for a wide range of formal models (e.g. Petri nets and extensions
or Context Free Grammars).

The usefulness of the WSTS stemmed from its clear abstract treatment
of the properties responsible for the decidability of coverability, termination
and boundedness. Because of this, an intensive development of the theory
of WSTS has been followed. At its core, a WSTS is simply a set X (of
states, possibly infinite) with a transition relation →⊆ X ×X. The set X is
quasi-ordered by ≤, and → fulfils one of the various possible monotonicities,
i.e. compatibilities with ≤. The quasi-ordering of X is further assumed to
be "well", i.e. well-founded (Definition 2.2).

Over the years, a number of strengthenings and weakenings of the notion
of monotonicity (of → w.r.t. ≤) were introduced, with the goal of allowing
WSTS to capture even more models.

In this document, we will provide a formal introduction to well-structured
transition systems starting from the fundamentals. This introduction will
primarily follow the statements outlined in the article by Finkle ([Fin90]),
incorporating detailed explanations and illustrative examples, such as the
broadcast protocol. Section 3 provides a concise overview of two classical ap-
proaches for proving decidability results employed in formal methods, named
the set-saturation method and the tree-saturation method, within the context
of Well-Structured Transition Systems (WSTS). Additionally, we introduce
Petri nets, a well-established formal system for modelling concurrent tran-
sitions, and we show how classical problems can be proven by formalizing
them within the framework of WSTS.

2

1 Well-quasi orderings
Recall that a quasi-ordering (a qo) is any reflexive and transitive relation
≤. We let x < y denote x ≤ y & x ̸= y. A partial ordering (a po) is an
antisymmetric qo.

Definition 1.1. A well-quasi-ordering (a wqo) is any quasi-ordering ≤ (over
some set X) such that, for any infinite sequence x0, x1, x2, . . . in X, there
exists indexes i < j with xi ≤ xj.

Hence a wqo is well-founded, i.e. it admits no infinite strictly decreasing
sequence x0 > x1 > x2 > · · ·

Osservation 1. We notice that any quasi-ordering in a finite set X is also
a well-quasi-ordering: any infinite sequence x0, x1, . . . must contain two in-
dexes i < j such that xi = xj, hence xi ≤ xj.

Lemma 1.1 (Erdös & Rado). Assume ≤ is a wqo. Then any infinite se-
quence contains an infinite increasing subsequence: xi0 ≤ xi1 ≤ xi2 . . . (with
i0 < i1 < i2

Proof. Consider an infinite sequence and the set M = {i ∈ N | ∀j > i, xi ≰ xj}.
M cannot be infinite, otherwise, it would lead to an infinite subsequence con-
tradicting the wqo hypothesis. Let i0 be any index greater than maxM , then
i0 can start an infinite increasing subsequence.

The existence of such infinite increasing subsequences is sometimes taken
as a definition for well-quasi-ordering, since leads to an equivalent definition
(the other implication is obvious).

Example 1 (Power set). Given a quasi-ordering ≤ for a set X, we can define
≤+ on X’s power set P(X) as follows:

A ≤+ B ⇐⇒ ∀a ∈ A ∃b ∈ B s.t. a ≤ b.

If ≤ is not well-founded, then neither ≤+ is well-founded: we can consider
(Q,≤) with the natural order. By taking the sequences xn = 1

n
in Q and

yn = { 1
n
} in Q we contradict the well-foundness propriety.

Whenever ≤ is well-founded, then also ≤+ is well-founded. Let’s prove
it by contradiction: suppose there exists a sequence A1, A2, . . . in X s.t. no
indexes i < j satisfy Ai ≤+ Aj. Let’s consider a1 ∈ A1, a2 ∈ A2, . . . s.t. ai is
an element of Ai that for each ai+1 ∈ Ai+1 ai+1 < ai, then a1 > a2 > a3 > . . .
contradicts well-foundness propriety of (X,≤).

3

Example 2 ((Nk,≤x) is wqo). Let k ∈ N, a = (a1, . . . , ak) and b =
(b1, . . . , bk) in Nk. We can define a ≤x b ⇐⇒ a1 ≤ b1∧a2 ≤ b2∧· · ·∧ak ≤ bk.
We can show that (Nk,≤x) is a wqo. Consider an infinite sequence a1, a2, . . .
over Nk and write ai = (ai,1, . . . , ai,k). We can extract an infinite subse-
quence ai1 , ai2 , . . . that is increasing over the first components, i.e., with
ai1,1 ≤ ai2,1 ≤ ai3,1 ≤ since (N,≤) is a wqo. From this infinite subsequence,
we can further extract an infinite subsequence that is also increasing on the
second component (again, using that N is wqo). We can iterate the same
until the last k component is reached.

Definition 1.2. Given ≤ a quasi-ordering, an upward-closed set is any set
I ⊆ X such that y ≥ x and x ∈ I entail y ∈ I.

Notation. To any x ∈ X we write ↑ x
def
= {y | y ≥ x}.

To any K ⊆ X we write ↑ K
def
= {x ∈ X | ∃k ∈ K x ≥ k}.

Definition 1.3. A basis of an upward-closed I is a set Ib such that

I =
⋃
x∈Ib

↑ x.

Lemma 1.2. If ≤ is a wqo, then any upward-closed set I has a finite basis.

Proof. The set of minimal elements of I is a basis because ≤ is well-founded.
It must be finite since a wqo does not admit an infinite strictly decreasing
sequence.

The following lemma is fundamental for ensuring the termination of set-
saturation methods which will provide a demonstration of the decidability of
the covering problem for WSTS (with mild assumptions). We will see it in
Section 3.1.

Lemma 1.3. If ≤ is a wqo, any infinite increasing sequence I0 ⊆ I1 ⊆ I2 . . .
of upward-closed sets eventually stabilizes, i.e. there is a k ∈ N such that
Ik = Ik+1 = Ik+2 = . . .

Proof. Assume we have a counter-example. We can extract an infinite sub-
sequence where inclusion is strict: In0 & In1 & In2 & Now, for any i > 0,
we can pick some xi ∈ Ini

\Ini−1
. For the definition of well-quasi-ordering, the

sequence of xi contains a pair i < j such that xi ≤ xj. Because xi belongs
to an upward-closed set Ini

we have xj ∈ Ini
, contradicting xj /∈ Ini−1

.

4

2 Well Structured Transition Systems
Definition 2.1. A transition system (TS) is a structure S = ⟨S,→, . . .⟩
where S = {s, t, . . .}1 is a set of states, and →⊆ S×S is any set of transitions.

Notation. In the following list, we establish some intuitive notations and
definitions for transition systems.

• We write Succ(s) (resp. Pred(s)) for the set {s′ ∈ S | s → s′} of im-
mediate successors of s (resp. {s′ ∈ S | s′ → s} the immediate prede-
cessors).

• A state with no successor is a terminal state.

• A computation is a maximal sequence s0 → s1 → s2 · · · of transitions.

• We write n→ (resp. +→,
=→,

x→) for the n-step iteration of the transition
relation → (resp. for its transitive closure, for its reflexive closure, for
its reflexive and transitive closure). Hence 1→ is →.

• We use similar notation for Succ() and Pred(), so that for α ∈ {+,=

, ∗, 0, 1, 2, . . .}, Succα(s) is
{
s′ | s α→ s′

}
.

The transition system S is finitely branching if all Succ(s) are finite. We
restrict our attention to finitely branching TS’s.

Definition 2.2. A well-structured transition system (WSTS) is a TS S =
⟨S,→,≤⟩ equipped with a qo ≤⊆ S × S between states such that the two
following conditions hold:

• well-quasi-ordering: ≤ is a wqo

• compatibility (or monotonicity): ≤ is (upward) compatible with →, i.e.
for all s1 ≤ t1 and transition s1 → s2, there exists a sequence t1 → t2
such that s2 ≤ t2.

We can consider a slightly strengthened definition by requiring strict com-
patibility.

Definition 2.3. A well-structured transition system (WSTS) S has strict
compatibility if for all s1 < t1 and transition s1 → s2 exists a sequence
t1

∗−→ t2 such that t1 < t2.
1TS’s may have additional structure like initial states, labels for transitions, durations,

causal independence relations, etc.

5

Strict compatibility means that from strictly larger states it is possible
to reach strictly larger states. Several families of formal models of processes
give rise to WSTS’s in a natural way, e.g. Petri nets when inclusion between
markings is used as the well-ordering (look at Section 4 for details).

Transitive and stuttering compatibility To apply decidability results
to the largest set of formal methods, we need to grasp the weakest extension
of the "standard" compatibility (Definition 2.2) to prove a decidability result.
For this purpose, we will consider slightly different extensions of compatibil-
ities.

Definition 2.4. Let S be a WSTS.

• S has strong compatibility (also called "1-1 compatibility") if for all
s1 ≤ t1 and transition s1 → s2, there exists a transition t1 → t2 with
s2 ≤ t2;

• S has transitive compatibility if for all s1 ≤ t1 and transition s1 → s2,
there exists a non-empty sequence t1 → t2 → · · · → tn with s2 ≤ tn.

• S has stuttering compatibility if for all s1 ≤ t1 and transition s1 → s2,
there exists a non-empty sequence t1 → t2 → · · · → tn with s2 ≤ tn and
s1 ≤ ti for all i < n.

• S has reflexive compatibility if for all s1 ≤ t1 and transition s1 → s2,
either s2 ≤ t1 or there exists a transition t1 → t2 with s2 ≤ t2.

These proprieties can be strengthened by considering strict compatibility
as done in Definition 2.3.

Osservation 2. When S = ⟨S,→,≤⟩ is a WSTS, then S∗ def
= ⟨S, ∗→,≤⟩

has strong, "1-1", compatibility, but it is not necessarily a WSTS. S∗ is in
general (when cardinality of S is greater or equal to ℵ0) not finitely branching.
Worse, when effectiveness issues are taken into account, S∗ needs not have
effective Succ or pred-basis even when S has.

We now illustrate three important examples of formal systems which can
be formalized in the context of WSTS: lossy channel systems, broadcast
protocols and context-free grammars.

6

Lossy Channel Systems [Abd+04] We consider system models consisting
of asynchronous parallel compositions of finite-state machines that commu-
nicate through sending and receiving messages via a finite set of unbounded
lossy FIFO channels (in the sense that they can nondeterministically lose
messages).

Definition 2.5. A Lossy Channel System (LCS) L is a tuple (S, sinit , C,M, δ)2,
where

• S is a finite set of (control) states. The control states of a system
with n finite-state machines are formed as the Cartesian product S =
S1 × · · · × Sn of the control states of each finite-state machine;

• sinit ∈ S is an initial state. The initial state of a system with n fi-
nite state machines is a tuple ⟨sinit 1 , . . . , sinit n⟩ of initial states of the
components;

• C is a finite set of channels;

• M is a finite set of messages;

• δ is a finite set of transitions, each of which is of the form (s1, Op, s2),
where s1 and s2 are states, and Op is a mapping from C to (chan-
nel) operations. An operation is either a send operation a!, a receive
operation a?, or an empty operation nop, where a ∈ M .

Notation. Let’s set up some frequently used notations.

• For x, y ∈ M∗, we let x • y denote the concatenation of x and y.

• We use xn to denote the concatenation of n copies of x.

• The empty string is denoted by ε.

• We use ⪯ to denote the subsequence relation on M∗, i.e., x ⪯ y denotes
that x is a (not necessarily contiguous) substring of y.

Example 3 (The Alternating Bit Protocol). In this example, we model the
well-known Alternating Bit Protocol as a lossy channel system. The alter-
nating bit protocol contains a Sender and a Receiver that communicate over
two FIFO channels cM (used to transmit messages from the Sender to the
Receiver) and cA (used to transmit acknowledgements from the Receiver to

2Sometimes a finite set of transition labels can be added: it’s practically useful to
describe protocols but uncomfortable for formal proves.

7

Figure 1: The Sender and the Receiver of the Alternating Bit Protocol.

the Sender). Both channels are faulty in the sense that they can lose but not
reorder messages. The purpose of the protocol is to transmit messages from
the Sender to the Receiver in the correct order, in spite of the fact that the
channels can lose messages. Corruption of messages can also be taken into
account by modelling them as loss (some mechanism will detect and discard
a corrupted message).

The operation of the protocol is the following: the Sender reads a pending
message to be sent to the Receiver. It adds a sequence number to the message,
sends it over the channel cM to the Receiver and awaits an acknowledgement
from the Receiver with the same sequence number. If it arrives, the proce-
dure is repeated with the next pending message but with sequence numbers
inverted. If no acknowledgement arrives within some time period the Sender
re-transmits the message. Re-transmissions are repeated until a correspond-
ing acknowledgement arrives. The Receiver receives messages with accom-
panying sequence numbers from the channel cM . When the message has the
expected sequence number, the message is delivered, and the Receiver looks
for a message with the inverted sequence number. Messages with unexpected
sequence numbers are discarded. The Receiver sends acknowledgments to
the Sender over the channel cA. An acknowledgement contains the sequence
number of the last received message. In Fig. 1 the Sender and the Receiver
are represented by labelled transition systems. In our model we have omit-
ted the actual messages; i.e., only sequence numbers are transmitted over the
channels. The finite state control part of the lossy channel system is obtained
as the combination of these two transition systems. The protocol operates on
the two channels cM and cA. This means that the model of the Alternating
Bit Protocol is the lossy channel system ⟨S, s0, A, C,M, δ⟩, where

• S is the set of pairs of the form ⟨i, j⟩, where 1 ≤ i, j ≤ 4, s0 is the state

8

⟨1, 1⟩;

• A is the set {Snd,Rcv}, where Snd represents the sending of a message
by the environment to the protocol, and Rcv represents the reception of
a message by the environment from the protocol;

• C is the set {cM , cA};

• M is the set {0, 1}, i.e., messages consist of only a sequence number;

• δ consists of the tuples of the form ⟨⟨s1, r1⟩, op, ⟨s2, r2⟩⟩, where either
r1 = r2 and ⟨s1, op, s2⟩ is a transition in the Sender component or
s1 = s2 and ⟨r1, op, r2⟩ is a transition in the Receiver component.

Let’s show that lossy channel systems are WSTS.

Theorem 2.1. Let ⪯ be the subword ordering. Lossy channel systems are
WSTS with stuttering compatibility.

Proof. Let L = (S, sinit, C,M, δ) and let’s consider the transition system SL
where a configuration is any k = ⟨s, w1, . . . , wn⟩ where s ∈ S is the control
state and wi ∈ M∗ is the current content of the channel ci ∈ C. Let’s consider
the transition system (SL,→) where →⊆ SL×SL is given by δ ⊆ S×Op×S
as follows:

∀k = ⟨s, w1, . . . , wn⟩,∀k′ = ⟨s′, w′
1, . . . , w

′
n⟩ k → k′ ⇐⇒

∃(s, op, s′) ∈ δ, op maps (w1, . . . , wn) into (w′
1, . . . , w

′
n).

Let’s derive an order for SL from the subword ordering as follows:

⟨s, w1, . . . , wn⟩ ⪯ ⟨s′, w′
1, . . . , w

′
n⟩ ⇐⇒

{
s = s′ and
wi ⪯ w′

i for i = 1, . . . , n.

(SL,⪯) is a wqo. Let’s prove that ((SL,⪯),→) is a WSTS with stuttering
compatibility. Let k1 ⪯ j1 and k1 → k2. To find a non-empty sequence
j1 → j2 → · · · → jn with k2 ≤ jn and k1 ≤ ji for all i < n. We can
handle the messages on each channel by considering the set of transitions
δ : C → Op3.

3We notice that the stuttering propriety can be satisfied even if channels are lossy.

9

Figure 2: A broadcast protocol.

Broadcast Protocols [SS14] As a concrete illustration of the principles
behind WSTS, let us consider a broadcast protocol in distributed systems.
In such protocols, an unbounded number of identical finite-state processes
running concurrently, can spawn new processes and communicate either via
exchanging a message between two processes (named rendez-vous message)
or via broadcast.

Definition 2.6. A broadcast protocol is defined as a triple B = (Q,M,R)
where Q is a finite set of locations, M a finite set of messages, and R is a set
of rules, that is, tuples (q, op, q′) in Q×Op×Q, each describing an operation
op available in the location q and leading to a new location q′, where op can
be:

• a sending rendez-vous message m ∈ M (denoted m!);

• a receiving operation of a rendez-vous message m ∈ M (denoted m?);

• a sending broadcast message m ∈ M (denoted m!!);

• a receiving operation of a broadcast message m ∈ M (denoted m??).

• a spawning of a new process that op will start executing from location
p (denoted sp(p)).

As usual, we write q
op−→ q′ if (q, op, q′) is in R.

Figure 2 displays a toy example where Q = {r, c, a, q,⊥} and M = {d,m}:
processes in location c can spawn new “active” processes in location a, while
also moving to location a (a rule depicted as a double arrow in Figure 2).
These active processes are flushed upon receiving a broadcast of either m
(emitted by a process in location q) or d (emitted by a process in location
r); location ⊥ is a sink location modelling process destruction.

10

The operational semantics of a broadcast protocol are expressed as a
transition system SB = (S,→), where states, here called configurations, are
(finite) multisets of locations in Q, hence S = NQ. Informantics for a config-
uration s in NQ is to record for each location q in Q the number of processes
s(q) currently in this location.

Notation. A state s = {qn1
1 , qn2

2 , . . . } ∈ NQ describes a multiset with n1 ∈ N
duplicates of q1 ∈ Q, n2 ∈ N duplicates of q2 ∈ Q and so on. We will denote
the number of duplicates of an element in q ∈ Q in a multiset s ∈ NQ as
s(q), i.e., n1 = s(q1), n2 = s(q2) and so on.

A natural ordering for NQ is the inclusion ordering defined by

s ⊆ s′ ⇐⇒ ∀q ∈ Q s(q) ≤ s′(q).

For instance, {q2, q′} ⊆ {q3, q′}, but if q ̸= q′, {q, q′2} ̸⊆ {q2, q′}. We further
write s = s1 + s2 for the union of two multisets, in which case s− s1 denotes
s2.4

It remains to define how the operations of B update such a configuration
through transitions s → s′ of SB:

• rendez-vous step: if q1
m!−→B q′1 and q2

m?−→B q′2 for some m ∈ M , then
s+ {q1, q2} → s+ {q′1, q′2} for all s ∈ NQ,

• spawn step: if q
sp(p)−−−→B q′, then s+ {q} → s+ {q′, p} for all s ∈ NQ,

• broadcast step: if q0
m!!−−→B q′0 and qi

m??−−→B q′i for all 1 ≤ i ≤ k (and
some m ∈ M), then s + {q0, q1, . . . , qk} → s + {q′0, q′1, . . . , q′k} for all
s ∈ NQ that do not contain a potential receiver for the broadcast, i.e.,
such that s(q) = 0 for all rules of the form q

m??−−→B q′.

With the protocol of Figure 2, the following steps are possible (with the
spawned location or exchanged messages indicated on the arrows):

{c2, q, r} a→ {a2, c, q, r} a→ {a4, q, r} m→ {c4, r,⊥} d→ {c, q4,⊥}.

We have just associated an ordered transition system SB = (NQ,→,⊆) with
every broadcast protocol B and are now ready to prove the following fact.

Proposition 2.1. Broadcast protocols are WSTS.
4The s1 − s2 operation is well defined iff s2 ⊆ s1.

11

Proof. First, (NQ,⊆) is a wqo: since Q is finite, this is just another instance
of Example 2. There remains to check that SB has compatibility. Formally,
this is done by considering an arbitrary step s1 → s2 (there are three cases)
and an arbitrary pair s1 ⊆ t1. It is enough to assume that t1 = s1+ {q}, i.e.,
t1 is just one location bigger that s1, and to rely on transitivity. If s1 → s2 is
a rendez-vous step with s2 = s1−{q1, q2}+{q′1, q′2}, then t1 = s1+{q} also has
a rendez-vous step t1 → t2 = t1−{q1, q2}+{q′1, q′2} and one sees that s2 ⊆ t2
as required. If now if s1 → s2 is a spawn step, similar reasoning proves that
s1 + {q} → s2 + {q}. Finally, when s1 = s+ {q1, . . . } → s2 = s+ {q′1, . . . } is
a broadcast step, one proves that s1 + {q} → s2 + {q′} when there is a rule
q

m??−−→B q′, or when q is not a potential receiver and q′ = q.

The protocol depicted in Figure 1 always terminates, starting from any
initial configuration. Indeed, consider any sequence of steps s0 → s1 → · · · →
si → · · · , write each configuration under the form si = {ana,i , cnc,i , qnq,i , rnr,i ,⊥n⊥,i},
and compare any two si and sj with i < j:

• either only spawn steps occur along the segment si → si+1 → · · · → sj,
thus nc,j < nc,i;

• or at least one m has been broadcast but no d has been broadcast, thus
nq,j < nq,i;

• or at least one d has been broadcast, and then nr,j < nr,i.

Thus in all cases, si ̸⊆ sj, i.e. the sequence s0, s1, . . . contradicts well-
foundation. Since (NQ,⊆) is a wqo there’s no infinite run.

We will prove the termination propriety in the more general context of
wqo (Theorem 3.2).

Context-Free Grammars Context-Free Grammars (abbreviated CFG)
are a special kind of string rewrite system. Let’s define it:

Definition 2.7. A CFG is a tuple G = ⟨NG, TG, RG⟩ where NG ∩ TG = ∅
composing the alphabet ΣG = NG ⊔ TG and RG ⊆ NG × Σ∗

G is a finite set of
production rules.

Given G a CFG, NG represents the non-terminal state, TG represents the
terminal states, rules RG are stated as Z → w, with Z ∈ NG and w ∈ Σ∗

G.
Sometimes we can also consider a starter symbol S ∈ NG. We can develop
two kinds of approaches:

12

• we can focus on the language generated by G, L(GS) := {w ∈ Σ∗|S ∗−→
w}, non-deterministic pushdown automata recognize exactly the context-
free languages;

• we can emphasize the rewrite steps, which give rise to a transition
system SG where states are elements of Σ∗

G (finite words) and RG can
be adapted to a transition →⊆ Σ∗

G × Σ∗
G. Several natural orders can

be defined between words.

Let’s develop the second approach by defining some natural orders:

Definition 2.8. Let Σ = NG ⊔ TG for a CFG G = ⟨NG, TG, RG⟩.
• embedding: a word u ∈ Σ∗ embeds into a word v ∈ Σ∗, denoted u ⪯ v,

iff u can be obtained by erasing letters from v;

• left-factor: a word u ∈ Σ∗ is a left-factor (or a prefix), written u ≤lf v
iff v = uw for some word w ∈ Σ∗.

• Parikh: u ≤P v iff a permutation of u is a subword of v;

It’s easy to show that ⪯ and ≤lf are partial orders (quasi-orders with
antisymmetry) while ≤P is a quasi-order (transitivity and reflexivity).

Assuming a finite alphabet, ⪯ is a wqo while ≤lf is not.

Example 4. Let’s show with a simple example that (Σ∗,≤lf) is not well
founded with Σ = {0, 1}. It is enough to consider the following sequence:
x0 = 1, x1 = 01, x2 = 001, This is an infinite sequence but does not exist
i < j s.t. xi is a prefix of xj.

Lemma 2.1. Let ≤1 and ≤2 be two partial orders on the same set X, with
≤2 larger than ≤1 (≤1⊆≤2). If ≤1 is a wqo then also ≤2 is a wqo.

Proof. Let’s consider any infinite sequence x0, x1, . . . in X. Then exists i < j
such that xi ≤1 xj which implies that xi ≤2 xj.

Since ≤P is larger than ⪯, then ≤P is a wqo.

Proposition 2.2. For any context-free grammar G,

1. ⟨SG,⪯⟩ is a WSTS with strong strict compatibility;

2. ⟨SG,≤P ⟩ is a WSTS with strong strict compatibility;

Proof. The idea is the same for both orderings. We just show the case with
≺.

Let any s1 ≺ t1 and transition s1 → s2, we want to find t2 s.t. t1 → t2 with
s2 ≺ t2; the idea is just to apply the exact sequence of rules (for obtaining
s1 → s2) on t1 (this can be done since s1 is embedded in t1) we obtain t2
with t1 ≺ t2.

13

3 Classical methods

3.1 Set-saturation methods

We speak of set-saturation methods when we have methods whose termina-
tion relies on Lemma 1.3. In this section, we illustrate the idea with the
backward reachability method for the covering problem.

Assume S = ⟨S,→,≤⟩ is a WSTS and I ⊆ S is a set of states. Backward
reachability analysis involves computing Pred∗(I) as the limit of the sequence
I0 ⊆ I1 ⊆ . . . where I0

def
= I and In+1

def
= In ∪ Pred (In). The problem with

such a general approach is that termination is not guaranteed.
For WSTS’s, this can be solved when I is upward-closed:

Proposition 3.1. If I ⊆ S is an upward-closed set of states, then Pred∗(I)
is upward-closed.

Proof. Assume s ∈ Pred∗(I). Then s
∗→ t for some t ∈ I. If now s′ ≥ s then

upward-compatibility entails that s′
∗→ t′ for some t′ ≥ t. Then t′ ∈ I and

s′ ∈ Pred∗(I).

To compute Pred∗(I) we shall make a few decidability assumptions:

Definition 3.1. A WSTS has an effective pred-basis if there exists an algo-
rithm accepting any state s ∈ S and returning a finite basis of ↑ Pred(↑ s).

Our definition is necessary for the generalized Theorem 3.1 we aim at.

Notation. We will denote pb(s) as a finite base of ↑ Pred(↑ s). For K ⊆ S,
we will denote with pb(K) a finite base for

⋃
s∈K ↑ Pred(↑ s).

Proposition 3.2 (Distributivity property of Pred and ↑ w.r.t union). Let
{Ki}i≤n with Ki ⊆ S. Then

↑
⋃
i≤n

Ki =
⋃
i≤n

↑ Ki; (1)

Pred(
⋃
i≤n

Ki) =
⋃
i≤n

Pred(Ki). (2)

Proof. Let’s prove ↑
⋃

i≤n Ki =
⋃

i≤n ↑ Ki.
(⊆) Let x ∈↑

⋃
i≤n Ki. Then ∃i ≤ n and ∃ki ∈ Ki s.t x ≥ ki. Then

x ∈↑ Ki and so x ∈
⋃

i≤n ↑ Ki.
(⊇) Let x ∈

⋃
i≤n ↑ Ki. Then ∃i ≤ n x ∈↑ Ki. Then ∃ki ∈ Ki s.t. x ≥ ki.

Since ki ∈
⋃

i≤n Ki we have x ∈↑
⋃

i≤nKi.
Let’s prove Pred(

⋃
i≤nKi) =

⋃
i≤n Pred(Ki).

14

(⊆) Let x ∈ Pred(
⋃

i≤n Ki). Then ∃i ≤ n and ki ∈ Ki s.t. ki → x. Thus,
x ∈ Pred(Ki) which implies x ∈

⋃
i≤n Pred(Ki).

(⊇) Let x ∈
⋃

i≤n Pred(Ki). Then ∃i ≤ n s.t. x ∈ Pred(Ki). Then
∃ki ∈ Ki s.t. ki → x, then ki ∈

⋃
i≤nKi, thus x ∈ Pred(

⋃
i≤nKi).

Now assume that S is a WSTS with effective pred-basis. Pick Ib a finite
basis of I and define a sequence K0, K1, . . . of sets with K0

def
= Ib, and

Kn+1
def
= Kn ∪ pb (Kn). Let m be the first index such that ↑ Km =↑ Km+1.

Such an m must exist by Lemma 1.3.

Lemma 3.1. ↑ Km =↑
⋃

i∈N Ki.

Proof. For the definition of pb and the distributivity property of Pred and ↑
w.r.t. union, we have:

↑ Y =↑ Y ′ implies ↑ pb(Y) =↑ pb (Y ′) .

Lemma 3.2. ↑
⋃

i Ki = Pred∗(I).

Proof. Use induction over n and show that

Kn ⊆↑ Kn ⊆ Pred∗(I) =↑ Pred∗(I)

On the other hand, the definition of pb entails ↑ Predn(I) ⊆↑ Kn, so that

Pred∗(I) ⊆
⋃
i∈N

↑ Ki ⊆↑
⋃
i∈N

Ki ⊆↑ Pred∗(I)

Proposition 3.3. If S is a WSTS with effective pred-basis and decidable ≤,
then it is possible to compute a finite basis of Pred∗(I) for any upward-closed
I =

⋃
x∈Ib ↑ x, given Ib.

Proof. The sequence K0, K1, . . . can be constructed effectively (each Kn is
finite and pb is effective). The index m can be computed because the com-
putability of ≤ entails the decidability of the predicate "↑ K =↑ K ′?" for
finite sets K and K ′ (just check ∀k ∈ K ∀k′ ∈ K the predicates k ≤ k′ and
k′ ≤ k). Finally, Km is a computable finite basis of Pred∗(I).

Definition 3.2. The covering problem is to decide, given two states s and
t, whether starting from s it is possible to cover t, i.e. to reach a state t′ ≥ t.

15

The covering problem is often called the "control-state reachability prob-
lem" when S has the form Q × D (for Q a finite set of so-called "control
states" and D an infinite set of data values, e.g. lossy channel systems) and
(q, d) ≤ (q′, d′) entails q = q′ and d ≤ d′.

Theorem 3.1. The covering problem is decidable for WSTS’s with effective
pred-basis and decidable ≤.

Proof. Thanks to Proposition 3.3, it is possible to compute K, a finite basis
of Pred∗(↑ t). It is possible to cover t starting from s iff s ∈↑ K. By
decidability of ≤, it is possible to check whether s ∈↑ K.

Variants of this problem can be decided in the same way. E.g. deciding
whether t can be covered from all states in a given upward-closed I.

3.2 Tree-saturation methods

We speak of tree-saturation methods when we have methods representing (in
some way) all possible computations inside a finite tree-like structure. In
this section, we illustrate the idea with the Finite Reachability Tree and its
several applications to termination, inevitability, and boundedness problems.

We assume S = ⟨S,→,≤⟩ is a WSTS.

Finite reachability tree

Definition 3.3. For any s ∈ S the Finite Reachability Tree from s (denoted
as FRT(s)), is a directed unordered tree where nodes are labelled by states of
S. Nodes are either dead or live. The root node is a live node n0, labeled by
s (written n0 : s). A dead node has no child node. A live node n : t has one
child n′ : t′ for each successor t′ ∈ Succ(t). If along the path from the root
n0 : s to some node n′ : t′ there exists a node n : t (n ̸= n′) such that t ≤ t′,
we say that n subsumes n′, and then n′ is a dead node. Otherwise, n′ is live.

Thus leaf nodes in FRT(s) are exactly the nodes labelled with terminal
states and the subsumed nodes.

Example 5 (FRT for Context-Free Grammars). Let’s build some examples
of a finite reachability tree in the context of CFG (Definition 2.7).

Let’s consider G = ⟨{S,X, Y }, {a, b}, RG⟩ where RG (the set of rules) is
given by

S → Y X | b
X → S

Y → a.

16

For example, a possible derivation from starter character S to terminal word
ab is given by:

S →G Y X →G aX →G aS →G ab.

Figure 3: FRT(XY) in ⟨SG,≤P ⟩. Subsumed nodes are boxed.

Figure 4: FRT(XY) in ⟨SG,⪯⟩. Subsumed nodes are boxed

17

Figure 3 and Figure 4 displays FRT(XY) for ⟨SG,≤P ⟩ and FRT(XY)
for ⟨SG,⪯⟩ respectively.

Lemma 3.3 (König). Let T be a rooted tree with infinite nodes, each with a
finite number of children. Then T has a branch of infinite length.

Proof. We will show that we can choose an infinite sequence of nodes t0, t1, t2, . . .
of T such that:

• t0 is the root node;

• tn+1 is a child of tn;

• each tn has infinitely many descendants.

Then the sequence t0, t1, t2, . . . is such a branch of infinite length. Take the
root node t0. By definition, it has a finite number of children. Suppose that
all of these children had a finite number of descendants. Then that would
mean that t0 had a finite number of descendants, and that would mean T was
finite. So t0 has at least one child with infinitely many descendants. Thus,
we may pick t1 as any one of those children.

We can conclude with an induction proof: suppose node tk has infinitely
many descendants. As tk has a finite number of children, by the same ar-
gument as above, tk has at least one child with infinitely many descendants.
Thus we may pick tk+1 which has infinitely many descendants. The assertion
is followed by the Axiom of Dependent Choice.

Lemma 3.4. FRT(s) is finite.

Proof. The wqo property ensures that all paths in FRT (s) are finite because
an infinite path would have to contain a subsumed node. Finite branching
and König’s Lemma conclude the proof.

With finiteness, we observe that FRT (s) is effectively computable if S
has (1) a decidable ≤, and (2) effective Succ (i.e, the Succ mapping is com-
putable).

The construction of FRT(s) does not require compatibility between ≤
and →. However, when we have compatibility, FRT(s) contains, in a finite
form, sufficient information to answer several questions about computational
paths starting from s.

Lemma 3.5. Any computation starting from s has a finite prefix labelling
maximal path in FRT(s).

18

Proof. Follows immediately from the finiteness of FRT(s) (Lemma 3.4).

Further results need slightly restricted notions of compatibility: transitive
compatibility and stuttering compatibility.

To prove the decidability of the termination problem, we need this last
proposition.

Proposition 3.4. Assume S is a WSTS with transitive compatibility (Def-
inition 2.4) S has a non-terminating computation starting from s iff FRT(s)
contains a subsumed node.

Proof. (⇒) : Consider a non-terminating computation. A finite prefix labels
a path in FRT(s) (Lemma 3.5). The last node of this path is a leaf node,
not labelled with a terminal state, hence a subsumed node.

(⇐) : If n2 : t2 is the leaf node subsumed by n1 : t1, we have s
∗→ t1

t→ t2
with t1 ≤ t2. Transitive compatibility allows us to infer the existence of
some t2 → t3 with t2 ≤ t3. Repeating this reasoning, we build an infinite
computation starting from s.

Hence we have

Theorem 3.2. Termination is decidable for WSTS’s with transitive compat-
ibility, decidable ≤ and effective Succ(·).

Other proprieties. Assume S is a WSTS with stuttering compatibility.

Proposition 3.5. Assume I is upward-closed. There exists a computation
starting from s where all states are in I iff FRT (s) has a maximal path where
all nodes are labelled with states in I.

Proof. (⇒) Use Lemma 3.5.
(⇐) Assume that n0 : t0, . . . , nk : tk is a maximal path in FRT (s) with

all labels in I. If nk is a live node, then t0 → t1 → · · · tk is a computation and
we are done. If nk is a dead node, then we display an infinite computation (
s =) s0 → s1 → · · · where all states are greater (w.r.t. ≤) than one of the
ti ’s, and thus belong to I.

We define the si ’s inductively, starting from s0
def
= s (= t0). Assume we

have already built s0, . . . , sn. We have sn ≥ ti for some i ≤ k. There are two
cases:

• i < k: then ti → ti+1. Because of stuttering compatibility, there exists a
sequence sn → · · · → sm(m > n) with sn, . . . , sm−1 ≥ ti and sm ≥ ti+1.
We use them to lengthen our sequence up to sm.

19

• i = k: then, because nk is dead, tj ≤ tk for some j < k. Thus tj ≤ sn,
so that we are back to the previous case and can lengthen our sequence.

The control-state maintainability problem is to decide, given an initial
state s and a finite set Q = {t1, . . . , tm} of states, whether there exists a
computation starting from s where all states cover one of the ti ’s. The dual
problem (called the inevitability problem) is to decide whether all computa-
tions starting from s eventually visit a state not covering one of the ti’s.

Theorem 3.3. The control-state maintainability problem and the inevitabil-
ity problem are decidable for WSTS’s with (1) stuttering compatibility, (2)
decidable ≤, and (3) effective Succ.

Proof. Thanks to Proposition 3.5, the control-state maintainability problem
reduces to checking whether FRT (s) has a maximal path with all labels in
↑ Q.

4 Petri nets

4.1 Introduction

Petri nets are graphical and mathematical modelling framework applicable
to discrete even systems. Petri nets are promising tools for representing and
studying information processing systems that are characterized as being con-
current, asynchronous, distributed, parallel, nondeterministic and stochastic.
As a graphical tool, Petri nets can be used as visual communication aids sim-
ilar to flow charts, block diagrams and networks. In addition, tokens are used
in these nets to simulate the dynamic and concurrent activities of systems.
As a mathematical formalism, it is possible to set up state equations, alge-
braic equations, and other mathematical models governing the behaviour of
systems.

Conceived by the German mathematician and computer scientist, Carl
Adam Petri, in the 1960s, Petri nets have since evolved into a robust and
extensively utilized theory for addressing real-world challenges.

Petri nets have been proposed for a wide variety of applications. This is
due to the generality and permissiveness inherent in Petri nets. They can
be applied informally to any system that can be described graphically like
flow charts and that needs some means of representing parallel or concurrent
activities. However, careful attention must be paid to a trade-off between
modelling generality and analysis capability. That is, the more general the

20

model, the less amenable it is to analysis. In fact, a major weakness of Petri
nets is the complexity problem, i.e. Petri-net-based models tend to become
too large for analysis even for a modest-size system.

This section will provide the foundational aspects of Petri nets, it will
show major generalizations, define classical theoretical problems and link to
the WSTS environment. For a more gentle and complete presentation of
Petri nets, you refer to [Rei13b].

4.2 Formal definition

In graphical representation, places are drawn as circles and transitions as bars
or boxes. Arcs are labelled with their weights (positive integers), where a k-
weighted arc can be interpreted as the set of k parallel arcs. Labels for unity
weight are usually omitted. A marking (state) assigns a non-negative integer
to each place. If a marking assigns to place p a non-negative integer k, we say
that p is marked with k tokens. Graphically, we place k black dots (tokens)
in place p. A marking is denoted by M , an m-vector, where m is the total
number of places. The p-th component of M , denoted by M(p), is the number
of tokens in place p. In modelling, using the concept of conditions and events,
places represent conditions, and transitions represent events. A transition
(an event) has a certain number of input and output places representing the
preconditions and postconditions of the event, respectively. The presence
of a token in a place is interpreted as holding the truth of the condition
associated with the place. In another interpretation, k tokens are placed to
indicate that k data items or resources are available.

Definition 4.1 (Petri net). A Petri net structure is a 5-tuple PN = ⟨P, T,A,W,M0⟩
where:

• P = {p1, p2, . . . , pm} is a finite set of places;

• T = {t1, t2, . . . , tn} is a finite set of transitions;

• A ⊆ (P × T) ∪ (T × P) is the set of arcs (flow relation);

• W : A → {1, 2, 3, . . . } is a weight function;

• M0 : P → {0, 1, . . . } is the initial marking;

• P ∩ T = ∅ and T ∩ P = ∅.

A Petri net structure N = ⟨P, T,A,W ⟩ without any specific initial marking
is denoted by N .

21

Figure 5: Graphic representation of a Petri net. t1, t2 are enable, t3 is dis-
abled.

Definition 4.2. Let’s define two preliminary concepts to understand the fir-
ing rule.

• Enable transition: A transition is said "enable transition" if each input
place has at least one token. For all input places the number of tokens
in a place of enable transition must be equal to or greater than the
weight of the arc connecting the named place with the transition.

• Disabled Transition: We say that a transition is a "disabled transition"
if there exists an input place with the number of tokens less than the
weight of the corresponding arc.

The behaviour of many systems can be described in terms of system
states and their changes. In order to simulate the dynamic behaviour of a
system, a state or marking in a Petri net is changed according to the following
transition (firing) rule:

Definition 4.3 (Firing rule). An enabled transition may or may not fire
(depending on whether or not the event actually takes place). A firing of an
enabled transition t removes w(p, t) tokens from each input place p of t, and
adds w(p, t) tokens to each output place p of t, where w(t, p) is the weight of
the arc from t to p.

A transition without any input place is called a source transition, and
one without any output place is called a sink transition. Note that a source
transition is unconditionally enabled and that the firing of a sink transition
consumes tokens, but does not produce any.

Notation. We can denote the marking of a Petri net by using the multi-
set notation. For example in Figure 4.1 we will denote the marking M as
p21p2p3p4 or {p1, p1, p2, p3}.

22

Definition 4.4 (Common extensions). We can define numerous extensions,
here are the most common ones:

• Petri nets with inhibitory arcs extend the basic model with special "in-
hibitory" arcs (also called "zero-test" arcs) that forbid (inhibit) the fir-
ing of a given transition when a given place is not empty.

• Petri nets with transfer arcs extend the basic model with special "trans-
fer" arcs. Here transitions fire as usual but their effect is richer: the
transfer arcs say whether the full content of some place must be trans-
ferred (added) to some other place.

• Petri nets with reset arcs extend the basic model with special "reset
arcs" telling how the firing of some transitions resets (empties) some
places.

• Self-modifying nets are Petri nets where the weight on arcs is not con-
stant anymore. Rather it is an expression evaluating into a linear com-
bination (with non-negative coefficients) of the current contents of the
places. Post self-modifying nets are self-modifying nets where the self-
modifying extension is only allowed on "post" arcs (arcs from transi-
tions to places).

4.3 Petri nets as WSTS

The simplest ordering between markings is inclusion: M ⊆ M ′ iff M(p) ≤
M ′(p) for every place p ∈ P . This is a well quasi-order as proved in the Ex-
ample 2. In all these extensions, reachability becomes undecidable, however:

Theorem 4.1. Using the inclusion ordering,

• Petri nets are WSTS’s with strong strict compatibility,

• Petri nets with transfer arcs are WSTS’s with strong strict compatibil-
ity,

• Petri nets with reset arcs are WSTS’s with strong compatibility,

• Post self-modifying nets are WSTS’s with strong strict compatibility.

Proof. Let PN = ⟨P, T,A,W,M0⟩ be any extension of a petri net. Let
M := NP be the set of all possible markings in places P (or, equivalently, a
multiset with elements of P). It’s easy to show that (M,⊆) is a wqo (see
Example 2). The set of transition T and arcs A can be seen as a transition

23

relation → : M × M. Let’s prove that (M,⊆,→) is a WSTS with strong
strict compatibility in all extensions (except reset arcs).

Let M1 ⊂ N1 and M1 → M2, we want to show that there exists a tran-
sition N1 → N2 with M2 ⊂ N2. With a detailed (but easy checking) it’s
possible to prove (in all extensions cited above, except with reset arcs) that
there are no constrains about applying the firings which transformed M1

into M2 at the state N1 since M1 ⊂ N1. We thus obtain a marking N2 which
satisfy the propriety.

In the case of reset arcs the same reasoning can be applied except for the
following: since the firing can resets some places, it can happen that both M2

obtained from M1 → M2 and N2 obtained from N1 → N2 (with same firings)
collapses to a same marking M2 = N2 (e.g. ∀p ∈ P M2(p) = N2(p) = 0) even
if N1 ⊂ M1.

Proposition 4.1. Petri Nets5 have effective pred basis.

Proof. Let PN = ⟨P, T,A,W,M0⟩ be a petri net. Let M := NP be the set of
all possible markings in places P (or, equivalently, a multiset with elements
of P).

We want to prove that exists an algorithm such that ∀M ∈ M we can
return a finite basis of ↑ Pred(↑ M). The upward-closed set ↑ M it’s obvious
to calculate (it’s just the set of all the markings M ′ with ∀p ∈ P M(p) ≤
M ′(p)). Then we have that Pred(↑ M) is computable by just considering all
possible firings (which are finite) that created a minimal marking (which are
finite) of (↑ M,⊆). Finally we can compute ↑ Pred(↑ M) as before.

So covering and termination, which are classical problems in the Petri net
field, is decidable thanks to Theorem 3.1 and 3.2. This also applies to the
three extensions (transfer arcs, reset arcs and post self-modifying nets) we
mentioned.

Other orderings can turn Petri nets into WSTS’s.
Assume PN = ⟨P, T, F,M0⟩ is a marked net (a net with a given initial

marking M0). Say a place p ∈ P is unbounded if there are reachable (from
M0) markings with an arbitrarily large number of tokens in p. Separate
bounded and unbounded places and write P = Pb ⊔ Pnb. Usually, one sees
places in Pb as "control places" and places in Pnb as "data places" or "counter
places". We can then define the ordering:

M ≪ M ′ def⇔

{
M(p) = M ′(p) for all p ∈ Pb,

M(p) ≤ M ′(p) for all p ∈ Pnb.

5Extensions are not considered here

24

This is a well-ordering over the set of reachable markings. So that, if we
associate to a marked net ⟨N,M0⟩ a transition system SN,M0 containing only
the reachable markings we get

Proposition 4.2. ⟨SN,M0 ,≪⟩ is a WSTS.

This works for all the extensions like post self modifying nets, etc. we
mentioned earlier. However, the well-ordering is only decidable when we can
tell effectively which places of the net are bounded. This can be done for
Petri nets and for post self-modifying nets. (For nets with reset arcs and
nets with transfer arcs, telling whether a given place p is bounded is not
decidable).

The partial bounded reachability problem is, given a marked net N,M0

and a marking M , to tell whether from M0 it is possible to reach an M ′ with
M ′(p) = M(p) for all p ∈ Pb.

Theorem 4.2. The partial bounded reachability problem is decidable for Petri
nets and post self-modifying nets.

Proof. The partial bounded reachability problem is an instance of the cov-
ering problem for ⟨SN,M0 ,≪⟩.

The most surprising aspect of this result is the relative simplicity of the
algorithmic notions that are involved.

25

References
[Ott87] Thomas Ottmann. Automata, Languages and Programming: 14th

International Colloquium Karlsruhe, Federal Republic of Ger-
many, July 13–17, 1987 Proceedings. Jan. 1987. doi: 10.1007/3-
540-18088-5.

[Fin90] Alain Finkel. “Reduction and covering of infinite reachability
trees”. In: Inf. Comput. 89 (Dec. 1990), pp. 144–179. doi: 10.
1016/0890-5401(90)90009-7.

[AJ96] Parosh Abdulla and Bengt Jonsson. “Verifying Programs with
Unreliable Channels”. In: Inf. Comput. 127 (June 1996), pp. 91–
101. doi: 10.1006/inco.1996.0053.

[Abd+96] Parosh Abdulla et al. “General decidability theorems for infinite-
state systems”. In: Aug. 1996, pp. 313–321. doi: 10.1109/LICS.
1996.561359.

[Abd+04] Parosh Abdulla et al. “Using Forward Reachability Analysis for
Verification of Lossy Channel Systems”. In: Formal Methods in
System Design 25 (July 2004), pp. 39–65. doi: 10.1023/B:
FORM.0000033962.51898.1a.

[Rei13a] W. Reisig. Understanding Petri nets. Modeling techniques, anal-
ysis methods, case studies. Translated from the German by the
author. July 2013. doi: 10.1007/978-3-642-33278-4.

[Rei13b] W. Reisig. Understanding Petri nets. Modeling techniques, anal-
ysis methods, case studies. Translated from the German by the
author. July 2013. doi: 10.1007/978-3-642-33278-4.

[SS14] Sylvain Schmitz and Ph Schnoebelen. “The Power of Well-Structured
Systems”. In: Feb. 2014. doi: 10.1007/978-3-642-40184-8_2.

26

https://doi.org/10.1007/3-540-18088-5
https://doi.org/10.1007/3-540-18088-5
https://doi.org/10.1016/0890-5401(90)90009-7
https://doi.org/10.1016/0890-5401(90)90009-7
https://doi.org/10.1006/inco.1996.0053
https://doi.org/10.1109/LICS.1996.561359
https://doi.org/10.1109/LICS.1996.561359
https://doi.org/10.1023/B:FORM.0000033962.51898.1a
https://doi.org/10.1023/B:FORM.0000033962.51898.1a
https://doi.org/10.1007/978-3-642-33278-4
https://doi.org/10.1007/978-3-642-33278-4
https://doi.org/10.1007/978-3-642-40184-8_2

	Well-quasi orderings
	Well Structured Transition Systems
	Classical methods
	Set-saturation methods
	Tree-saturation methods

	Petri nets
	Introduction
	Formal definition
	Petri nets as WSTS

